














DNA. This technique can be extended to probe the
binding of different types of small molecules. To illustrate
the potential for uncovering different binding modes, we
have examined the effects of two additional small mol-
ecules on the rotational properties of DNA. Addition of
the minor groove binder netropsin to rotationally uncon-
strained dsDNA showed no significant changes in the
DNA extension, nor did it significantly influence the
value of the bending persistence length (data not
shown). However, rotation–extension curves taken on ro-
tationally constrained DNA following the addition of
netropsin revealed a shift of the rotation–extension
curves (Figure 5A, increasing concentrations of netropsin
are shown from blue to red; note that the lack of an effect
of netropsin binding on DNA extension can also be
observed from this panel). Interestingly, the binding of
the minor groove binder netropsin shifts the center of
the rotation–extension curves in the opposite direction
compared to the shift occasioned by ethidium binding,
corresponding to a increase in the twist per base upon
netropsin binding. Our observation of an increase in the
twist per base upon netropsin binding is in agreement with
the findings of bulk solution studies on circular plasmids
(31,32,35,66). In contrast, crystal structures of netropsin
bound to a short DNA oligomer found no change in DNA
twist (34,36). This discrepancy might be due to crystalliza-
tion artifacts or due to specific effects from the DNA
sequence used in the crystallization study. Our single
molecule measurements strongly suggest that netropsin
does increase the average twist per base when binding to
genomic DNA in solution.

Quantification of the number of positive turns required
to recover the maximum of the rotation–extension curves
in the presence of netropsin, as a function of the netropsin
concentration, is shown in Figure 5B. Assuming that
binding of one netropsin molecule overwinds the DNA
helix by 8�, which is a typical value for the range of
values reported from the bulk studies by Snounou and
Malcolm (32), this dependence can be fit to the
McGhee–von Hippel model in a manner exactly analo-
gous to that employed in the fitting of the EtBr data
(Figure 3B), and yields values of K= 2.8� 106M�1 for
the binding constant and n= 11.2 for the binding site.
Using the value of 3.5� overwinding per netropsin
molecule reported by Triebel et al. (35), we obtain a

Figure 5. Effect of Netropsin and TPT on DNA rotation–extension
behavior at low force. (A) Rotation–extension curves for a 20.6-kb
DNA in the presence of increasing concentrations of netropsin, taken
at F=0.25 pN. Netropsin concentrations employed are (blue to red): 0,
0.01, 0.1, 1, 10 and 100 mM. Upon addition of netropsin, it is observed
that rotation of the magnets by positive turns is required to recover
the maximum of the rotation–extension curves. (B) Quantification of
the number of positive turns required to recover the maximum of the

rotation–extension curves in the presence of netropsin, as a function of
the netropsin concentration (main graph). The black line is a fit to the
McGhee–von Hippel model (see main text for details), with binding
constant K= 2.8� 106M�1 and binding site n=11.2. (C) Rotation–
extension curves for 20.6-kb DNA in the presence of increasing con-
centrations of TPT, taken at F=0.25 pN. TPT concentrations
employed are (blue to red): 0, 10, 100 and 1000mM. Upon addition
of TPT, it is observed that rotation of the magnets to negative turns is
required to recover the maximum of the rotation–extension curves.
(D) Quantification of the number of negative turns required to
recover the maximum of the rotation–extension curves in the
presence of TPT, as a function of TPT concentrations. Symbols are
the mean and standard deviation from three independent measure-
ments. No binding model was fit to the data since saturation could
not be achieved due to the relatively low affinity and limited solubility
of TPT.
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similar quality fit to the data (not shown) with parameters
K= 6.3� 106M�1 and n= 5.1. A caveat is that netropsin
has a known preference for AT-rich sequences (2,32,35).
Fitting the simple McGhee–von Hippel binding model,
which assumes equivalent binding sites, is therefore a
crude approximation to a more complicated binding
model that would take into account these preferences.
Nonetheless, the data suggest that netropsin has footprint
on DNA of at least 5 bp, significantly larger than that of
EtBr, in agreement with the crystallographic structure
(Figure 1C). In summary, we observe that our technique
can also readily inform on the binding of minor-groove
binders, despite the fact that they do not have significant
effects on DNA extension, in contrast to intercalators
such as EtBr.

Effect of the chemotherapeutic topotecan on torsionally
constrained DNA

Lastly, we have used our single-molecule rotation tech-
niques to probe the binding of a small molecule for
which the binding mode has been disputed, topotecan
(TPT). TPT is a topoisomerase IB inhibitor that binds
to the topoisomerase IB–DNA complex (67) and can in-
fluence the dynamics of supercoil removal (68,69). In
previous MT measurement we have detected no effect of
TPT on DNA in the absence of topoisomerase in the rela-
tively high ionic strength topoisomerase reaction buffer
(50–100mM monovalent, 1–10mM divalent ions) for con-
centrations below 10 mM TPT (68). To test whether TPT
binding to bare DNA is detectable by MT, we chose a
lower ionic strength buffer (�15mM monovalent, see
Materials and methods section) for this work and tested
TPT concentrations up to 1mM. Measurement at higher
TPT concentrations were not possible due to solubility
limitations. We observe a clear effect of increasing TPT
on rotation–extension curves (Figure 5C). The rotation–
extension curves broaden and their centers shift to
negative turns (Figure 5B, inset) with increasing TPT con-
centration, compatible with a reduction in Tw as a result
of TPT binding. Due to the higher concentrations required
to observe an effect on the rotation–extension curves
compared to EtBr and netropsin, combined with the solu-
bility limitations that prevent reliable measurements above
1mM, we were not able to probe TPT binding to DNA up
to saturation. Nonetheless, the trends observed upon TPT
binding, namely a significant broadening and shift of the
rotation–extension curves towards negative turns
(Figure 5C), are similar to our observations for ethidium
intercalation (Figure 3A). Consequently, our results
suggests an intercalative binding mode for TPT.

CONCLUSIONS AND OUTLOOK

In summary, we have employed single-molecule MT that
provide rotational control in addition to control of the
stretching forces in order to probe the binding modes of
small-molecule ligands to DNA. In the case of the
intercalator EtBr, studied in greatest detail, these experi-
ments confirm published measurements of the binding
constant and binding site size, as well as the reduction

of Tw occasioned by EtBr binding. They also provide a
new means to measure the change in Tw caused by the
binding of a single ethidium molecule, indicate the possi-
bility of torque-dependent intercalation potentially
coupled with a reduction in DNA’s torsional stiffness,
and demonstrate the stabilization of duplex B-form
DNA over single-stranded or P-form DNA by ethidium
binding. Our measurements can also readily distinguish
between intercalative binding and minor groove binding,
allowing one to directly establish the binding mode of a
small molecule. As these measurements are performed
with magnetic tweezers, which permit multiplexing (70),
it is expected that high-throughput versions of these
measurements can be implemented in a straightforward
manner. Furthermore, the recent augmentation of
magnetic tweezers with torque-monitoring capability
should in the future complete the analysis of small-
molecule binding (71, J. Lipfert et al., submitted for
publication).
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